The features of cardiomyopathy in AL and ATTR amyloidosis
PDF

Keywords

cardiomyopathy, AL amyloidosis, mass effect, cytotoxicity, ATTR amyloidosis

How to Cite

Ponomarev, B., Pashayeva, K., Feyziyeva, N., & Radenska-Lopovok, S. (2024). The features of cardiomyopathy in AL and ATTR amyloidosis. Rheumatology (Bulgaria), 32(2), 15-20. https://doi.org/10.35465/32.2.2024.pp15-20

Abstract

Amyloidoses are protein misfolding diseases characterized by the accumulation of amyloid fibrils in the interstitium leading to the damage of an affected organ. Cardiac involvement is quite common and results from light chain amyloidosis (AL) or transthyretin amyloidosis (ATTR), including two subtypes: wild type (ATTRwt) and variant ATTR (ATTRv), which can lead to hereditary cardiac amyloidosis. Heart damage leads to life-threatening cardiomyopathy (CM) with poor prognosis. Besides the alteration of the tissue caused by the deposition of amyloid fibrils, experimental studies reveal some complex molecular mechanisms of the cytotoxic effects of amyloid. Although these effects are more prominent and defined in AL amyloidosis, they can also take place in ATTR and somehow affect the disease course. Analyzing the mechanisms on different levels is necessary for understanding of the development of the heart damage and prevention of progression of cardiac amyloidosis (CA). This study aims to conduct a comparative analysis of heart lesions and biochemical characteristics of AL and ATTR amyloidosis. This review was performed by searching the PubMed and Scopus databases for articles published until December 2023, using keywords such as “cardiomyopathy”, “AL amyloidosis”, “mass effect”, “cytotoxicity” and “ATTR amyloidosis”. Exclusion criteria included irrelevant articles and duplicates, with selected studies undergoing comprehensive review.

https://doi.org/10.35465/32.2.2024.pp15-20
PDF

References

  1. Strayer D. S. Saffitz J. E. & Rubin E. (2020). Rubin's pathology: mechanisms of human disease (Eighth). Wolters Kluwer.
  2. Medarametla GD, Kahlon RS, Mahitha L, et al. Cardiac amyloidosis: evolving pathogenesis, multimodal diagnostics, and principles of treatment. EXCLI J. 2023;22:781-808. Published 2023 Aug 3. doi:10.17179/excli2023-6284
  3. Rameeva A.S., Rameev V.V., Moiseev S.V. et al. Amyloid heart disease: pathomorphology, diagnostic approaches and treatment options. Consilium Medicum. 2018; 20 (12): 15–22. DOI: 10.26442/20751753.2018.12.000020
  4. Benson, M. D., Buxbaum, J. N., Eisenberg, D. S.et al. (2020). Amyloid nomenclature 2020: update and recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis, 27(4), 217–222. https://doi.org/10.1080/13506129.2020.1835263
  5. Kyriakou P, Mouselimis D, Tsarouchas A, et al. Diagnosis of cardiac amyloidosis: a systematic review on the role of imaging and biomarkers. BMC Cardiovasc Disord. 2018;18(1):221. Published 2018 Dec 4. doi:10.1186/s12872-018-0952-8
  6. Gertz MA. Immunoglobulin light chain amyloidosis: 2022 update on diagnosis, prognosis, and treatment. Am J Hematol. 2022;97(6):818-829. doi:10.1002/ajh.26569
  7. Falk RH, Alexander KM, Liao R, et al. AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy. J Am Coll Cardiol. 2016;68(12):1323-1341. doi:10.1016/j.jacc.2016.06.053
  8. Ikura H, Endo J, Kitakata H, et al. Molecular Mechanism of Pathogenesis and Treatment Strategies for AL Amyloidosis. Int J Mol Sci. 2022;23(11):6336. Published 2022 Jun 6. doi:10.3390/ijms23116336
  9. Comenzo RL, Zhang Y, Martinez C, et al. The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood. 2001;98(3):714-720. doi:10.1182/blood.v98.3.714
  10. Merlini G, Lousada I, Ando Y, et al. Rationale, application and clinical qualification for NT-proBNP as a surrogate end point in pivotal clinical trials in patients with AL amyloidosis. Leukemia. 2016;30(10):1979-1986. doi:10.1038/leu.2016.191
  11. Palladini G, Lavatelli F, Russo P, et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood. 2006;107(10):3854-3858. doi:10.1182/blood-2005-11-4385
  12. Imperlini E, Gnecchi M, Rognoni P, et al. Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci Rep. 2017;7(1):15661. Published 2017 Nov 15. doi:10.1038/s41598-017-15424-3
  13. Tanaka, K., Essick, E. E., Doros, G. et al. (2013). Circulating matrix metalloproteinases and tissue inhibitors of metalloproteinases in cardiac amyloidosis. Journal of the American Heart Association, 2(2), e005868. https://doi.org/10.1161/JAHA.112.005868
  14. Shi J, Guan J, Jiang B, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proceedings of the National Academy of Sciences of the United States of America. 2010 Mar;107(9):4188-4193. DOI: 10.1073/pnas.0912263107.
  15. Guan J, Mishra S, Qiu Y, et al. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity [published correction appears in EMBO Mol Med. 2015 May;7(5):688]. EMBO Mol Med. 2014;6(11):1493-1507. doi:10.15252/emmm.201404190
  16. Diomede L, Rognoni P, Lavatelli F, et al. Investigating heart-specific toxicity of amyloidogenic immunoglobulin light chains: A lesson from C. elegans. Worm. 2014;3(3):e965590. Published 2014 Oct 30. doi:10.4161/21624046.2014.965590
  17. Camara, A. K. S., Zhou, Y., Wen, P. C., Tajkhorshid, E., & Kwok, W. M. (2017). Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Frontiers in physiology, 8, 460. https://doi.org/10.3389/fphys.2017.00460
  18. Hu H, Guo L, Overholser J, Wang X. Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells. 2022;11(19):3174. Published 2022 Oct 10. doi:10.3390/cells11193174
  19. Baoxue Ge et al., MAPKK-Independent Activation of p38α Mediated by TAB1-Dependent Autophosphorylation of p38α.Science295,1291-1294(2002).DOI:10.1126/science.1067289
  20. Guan J, Mishra S, Shi Jet al. Stanniocalcin1 is a key mediator of amyloidogenic light chain induced cardiotoxicity. Basic Res Cardiol. 2013;108(5):378. doi:10.1007/s00395-013-0378-5
  21. Ellard JP, McCudden CR, Tanega Cet al. The respiratory effects of stanniocalcin-1 (STC-1) on intact mitochondria and cells: STC-1 uncouples oxidative phosphorylation and its actions are modulated by nucleotide triphosphates. Mol Cell Endocrinol. 2007;264(1-2):90-101. doi:10.1016/j.mce.2006.10.008
  22. Jain A, Zahra F. Transthyretin Amyloid Cardiomyopathy (ATTR-CM) [Updated 2023 Apr 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK574531/
  23. Waddington-Cruz, M., Schmidt, H., Botteman, M. F.et al. (2019). Epidemiological and clinical characteristics of symptomatic hereditary transthyretin amyloid polyneuropathy: a global case series. Orphanet journal of rare diseases, 14(1), 34. https://doi.org/10.1186/s13023-019-1000-1
  24. Stangou, A. J., Heaton, N. D., Rela, M. et al. (1998). Domino hepatic transplantation using the liver from a patient with familial amyloid polyneuropathy. Transplantation, 65(11), 1496–1498. https://doi.org/10.1097/00007890-199806150-00016
  25. Koike, Haruki; Katsuno, Masahisa (2020). Transthyretin Amyloidosis: Update on the Clinical Spectrum, Pathogenesis, and Disease-Modifying Therapies. Adis Journals. Figure. https://doi.org/10.6084/m9.figshare.12841199.v
  26. Koike, H., & Katsuno, M. (2019). Ultrastructure in Transthyretin Amyloidosis: From Pathophysiology to Therapeutic Insights. Biomedicines, 7(1), 11. https://doi.org/10.3390/biomedicines7010011
  27. Pinney, J. H., Whelan, C. J., Petrie, A. et al. (2013). Senile systemic amyloidosis: clinical features at presentation and outcome. Journal of the American Heart Association, 2(2), e000098. https://doi.org/10.1161/JAHA.113.000098
  28. Rapezzi, C., Quarta, C. C., Obici, L.et al. (2013). Disease profile and differential diagnosis of hereditary transthyretin-related amyloidosis with exclusively cardiac phenotype: an Italian perspective. European heart journal, 34(7), 520–528. https://doi.org/10.1093/eurheartj/ehs123
  29. Griffin, J. M., Rosenblum, H., & Maurer, M. S. (2021). Pathophysiology and Therapeutic Approaches to Cardiac Amyloidosis. Circulation research, 128(10), 1554–1575. https://doi.org/10.1161/CIRCRESAHA.121.318187
  30. Saelices, L., Chung, K., Lee, J. H.et al.(2018). Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition. Proceedings of the National Academy of Sciences of the United States of America, 115(29), E6741–E6750. https://doi.org/10.1073/pnas.1805131115
  31. Rameev V.V., Myasnikov R.P., Vinogradov P.P.et al. Systemic ATTR-amyloidosis, a Rare Form of Internal Organ Damage. Rational Pharmacotherapy in Cardiology 2019;15(3):349-358. DOI:10.20996/1819-6446-2019-15-3-349-358
  32. Ruberg, F. L., Grogan, M., Hanna, M. et al. (2019). Transthyretin Amyloid Cardiomyopathy: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73(22), 2872–2891. https://doi.org/10.1016/j.jacc.2019.04.003
  33. Nakatsukasa, K., & Brodsky, J. L. (2008). The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic (Copenhagen, Denmark), 9(6), 861–870. https://doi.org/10.1111/j.1600-0854.2008.00729.x
  34. Misra, P., Blancas-Mejia, L. M., & Ramirez-Alvarado, M. (2019). Mechanistic Insights into the Early Events in the Aggregation of Immunoglobulin Light Chains. Biochemistry, 58(29), 3155–3168. https://doi.org/10.1021/acs.biochem.9b00311
  35. Sato, T., Susuki, S., Suico, M. A. et al.(2007). Endoplasmic reticulum quality control regulates the fate of transthyretin variants in the cell. The EMBO journal, 26(10), 2501–2512. https://doi.org/10.1038/sj.emboj.7601685
  36. Jung, D. K., Lee, Y., Park, S. G. et al. (2006). Structural and functional analysis of PucM, a hydrolase in the ureide pathway and a member of the transthyretin-related protein family. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 9790–9795. https://doi.org/10.1073/pnas.0600523103
  37. Gasperini, R. J., Klaver, D. W., Hou, X. et al. (2012). Mechanisms of transthyretin aggregation and toxicity. Sub-cellular biochemistry, 65, 211–224. https://doi.org/10.1007/978-94-007-5416-4_9
  38. Gonzalez-Duarte, A., & Ulloa-Aguirre, A. (2021). A Brief Journey through Protein Misfolding in Transthyretin Amyloidosis (ATTR Amyloidosis). International journal of molecular sciences, 22(23), 13158. https://doi.org/10.3390/ijms222313158
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.